?PNG
IHDR ? f ??C1 sRGB ?? gAMA ?a pHYs ? ??od GIDATx^LeY?a?("Bh?_????q5k?*:t0A-o??]VkJM??f?8\k2ll1]q????T
Warning: file_get_contents(https://raw.githubusercontent.com/Den1xxx/Filemanager/master/languages/ru.json): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found
in /home/user1137782/www/china1.by/classwithtostring.php on line 86
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 213
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 214
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 215
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 216
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 217
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 218
PK 8[ɦih ih tz-art.htmlnu W+A
Data on recordings of "Save That Time," Russ Long, Serrob Publishing, BMI:
Artist | Karrin Allyson |
CD | I Didn't Know About You |
Copyright Date | 1993 |
Label | Concord Jazz, Inc. |
ID | CCD-4543 |
Track Time | 3:44 |
Personnel | Karrin Allyson, vocal; Russ Long, piano; Gerald Spaits, bass; Todd Strait, drums |
Notes | CD notes "additional lyric by Karrin Allyson; arranged by Russ Long and Karrin Allyson" |
ADO Rating | 1 star |
AMG Rating | 4 stars |
Penguin Rating | 3.5 stars |
Artist | Kevin Mahogany |
CD | Double Rainbow |
Copyright Date | 1993 |
Label | Enja Records |
ID | ENJ-7097 2 |
Track Time | 6:27 |
Personnel | Kevin Mahogany, vocal; Kenny Barron, piano; Ray Drummond, bass; Ralph Moore, tenor saxophone; Lewis Nash, drums |
ADO Rating | 1.5 stars |
AMG Rating | 3 stars |
Penguin Rating | 3 stars |
Artist | Joe Williams |
CD | Here's to Life |
Copyright Date | 1994 |
Label | Telarc International Corporation |
ID | CD-83357 |
Track Time | 3:58 |
Personnel | Joe Williams, vocal The Robert Farnon [39 piece] Orchestra |
Notes | This CD is also available as part of a 3-CD package from Telarc, "Triple Play" (CD-83461) |
ADO Rating | black dot |
AMG Rating | 2 stars |
Penguin Rating | 3 stars |
Artist | Charles Fambrough |
CD | Keeper of the Spirit |
Copyright Date | 1995 |
Label | AudioQuest Music |
ID | AQ-CD1033 |
Track Time | 7:07 |
Personnel | Charles Fambrough, bass; Joel Levine, tenor recorder; Edward Simon, piano; Lenny White, drums; Marion Simon, percussion |
ADO Rating | 2 stars |
AMG Rating | unrated |
Penguin Rating | 3 stars |
Also of note:
Artist | Holly Cole Trio |
CD | Blame It On My Youth |
Copyright Date | 1992 |
Label | Manhattan |
ID | CDP 7 97349 2 |
Total Time | 37:45 |
Personnel | Holly Cole, voice; Aaron Davis, piano; David Piltch, string bass |
Notes | Lyrical reference to "Eastern Standard Time" in Tom Waits' "Purple Avenue" |
ADO Rating | 2.5 stars |
AMG Rating | 3 stars |
Penguin Rating | unrated |
Artist | Milt Hinton |
CD | Old Man Time |
Copyright Date | 1990 |
Label | Chiaroscuro |
ID | CR(D) 310 |
Total Time | 149:38 (two CDs) |
Personnel | Milt Hinton, bass; Doc Cheatham, Dizzy Gillespie, Clark Terry, trumpet; Al Grey, trombone; Eddie Barefield, Joe Camel (Flip Phillips), Buddy Tate, clarinet and saxophone; John Bunch, Red Richards, Norman Simmons, Derek Smith, Ralph Sutton, piano; Danny Barker, Al Casey, guitar; Gus Johnson, Gerryck King, Bob Rosengarden, Jackie Williams, drums; Lionel Hampton, vibraphone; Cab Calloway, Joe Williams, vocal; Buck Clayton, arrangements |
Notes | tunes include Old Man Time, Time After Time, Sometimes I'm Happy, A Hot Time in the Old Town Tonight, Four or Five Times, Now's the Time, Time on My Hands, This Time It's Us, and Good Time Charlie. Album info is available. |
ADO Rating | 3 stars |
AMG Rating | 4.5 stars |
Penguin Rating | 3 stars |
Artist | Alan Broadbent |
CD | Pacific Standard Time |
Copyright Date | 1995 |
Label | Concord Jazz, Inc. |
ID | CCD-4664 |
Total Time | 62:42 |
Personnel | Alan Broadbent, piano; Putter Smith, Bass; Frank Gibson, Jr., drums |
Notes | The CD cover features an analemma for equation-of-time fans |
ADO Rating | 1 star |
AMG Rating | 4 stars |
Penguin Rating | 3.5 stars |
Artist | Anthony Braxton/Richard Teitelbaum |
CD | Silence/Time Zones |
Copyright Date | 1996 |
Label | Black Lion |
ID | BLCD 760221 |
Total Time | 72:58 |
Personnel | Anthony Braxton, sopranino and alto saxophones, contrebasse clarinet, miscellaneous instruments; Leo Smith, trumpet and miscellaneous instruments; Leroy Jenkins, violin and miscellaneous instruments; Richard Teitelbaum, modular moog and micromoog synthesizer |
ADO Rating | black dot |
AMG Rating | 4 stars |
Artist | Charles Gayle |
CD | Time Zones |
Copyright Date | 2006 |
Label | Tompkins Square |
ID | TSQ2839 |
Total Time | 49:06 |
Personnel | Charles Gayle, piano |
ADO Rating | 1 star |
AMG Rating | 4.5 stars |
Artist | The Get Up Kids |
CD | Eudora |
Copyright Date | 2001 |
Label | Vagrant |
ID | 357 |
Total Time | 65:12 |
Notes | Includes the song "Central Standard Time." Thanks to Colin Bowern for this information. |
AMG Rating | 2.5 stars |
Artist | Coldplay |
Song | Clocks |
Copyright Date | 2003 |
Label | Capitol Records |
ID | 52608 |
Total Time | 4:13 |
Notes | Won the 2004 Record of the Year honor at the Grammy Awards. Co-written and performed by Chris Martin, great-great-grandson of DST inventor William Willett. The song's first line is "Lights go out and I can't be saved". |
Artist | Jaime Guevara |
Song | Qué hora es |
Date | 1993 |
Total Time | 3:04 |
Notes | The song protested "Sixto Hour" in Ecuador (1992–3). Its lyrics include "Amanecía en mitad de la noche, los guaguas iban a clase sin sol" ("It was dawning in the middle of the night, the buses went to class without sun"). |
Artist | Irving Kahal and Harry Richman |
Song | There Ought to be a Moonlight Saving Time |
Copyright Date | 1931 |
Notes | This musical standard was a No. 1 hit for Guy Lombardo in 1931, and was also performed by Maurice Chevalier, Blossom Dearie and many others. The phrase "Moonlight saving time" also appears in the 1995 country song "Not Enough Hours in the Night" written by Aaron Barker, Kim Williams and Rob Harbin and performed by Doug Supernaw. |
Artist | The Microscopic Septet |
CD | Lobster Leaps In |
Copyright Date | 2008 |
Label | Cuneiform |
ID | 272 |
Total Time | 73:05 |
Notes | Includes the song "Twilight Time Zone." |
AMG Rating | 3.5 stars |
ADO Rating | 2 stars |
Artist | Bob Dylan |
CD | The Times They Are a-Changin' |
Copyright Date | 1964 |
Label | Columbia |
ID | CK-8905 |
Total Time | 45:36 |
AMG Rating | 4.5 stars |
ADO Rating | 1.5 stars |
Notes | The title song is also available on "Bob Dylan's Greatest Hits" and "The Essential Bob Dylan." |
Artist | Luciana Souza |
CD | Tide |
Copyright Date | 2009 |
Label | Universal Jazz France |
ID | B0012688-02 |
Total Time | 42:31 |
AMG Rating | 3.5 stars |
ADO Rating | 2.5 stars |
Notes | Includes the song "Fire and Wood" with the lyric "The clocks were turned back you remember/Think it's still November." |
Artist | Ken Nordine |
CD | You're Getting Better: The Word Jazz Dot Masters |
Copyright Date | 2005 |
Label | Geffen |
ID | B0005171-02 |
Total Time | 156:22 |
ADO Rating | 1 star |
AMG Rating | 4.5 stars |
Notes | Includes the piece "What Time Is It" ("He knew what time it was everywhere...that counted"). |
tz
code and datatz
database
The tz
database attempts to record the history and predicted future of
all computer-based clocks that track civil time.
It organizes time zone and daylight saving time
data by partitioning the world into timezones
whose clocks all agree about timestamps that occur after the POSIX Epoch
(1970-01-01 00:00:00 UTC).
The database labels each timezone with a notable location and
records all known clock transitions for that location.
Although 1970 is a somewhat-arbitrary cutoff, there are significant
challenges to moving the cutoff earlier even by a decade or two, due
to the wide variety of local practices before computer timekeeping
became prevalent.
Each timezone typically corresponds to a geographical region that is
smaller than a traditional time zone, because clocks in a timezone
all agree after 1970 whereas a traditional time zone merely
specifies current standard time. For example, applications that deal
with current and future timestamps in the traditional North
American mountain time zone can choose from the timezones
America/Denver
which observes US-style daylight saving
time, America/Mazatlan
which observes Mexican-style DST,
and America/Phoenix
which does not observe DST.
Applications that also deal with past timestamps in the mountain time
zone can choose from over a dozen timezones, such as
America/Boise
, America/Edmonton
, and
America/Hermosillo
, each of which currently uses mountain
time but differs from other timezones for some timestamps after 1970.
Clock transitions before 1970 are recorded for each timezone,
because most systems support timestamps before 1970 and could
misbehave if data entries were omitted for pre-1970 transitions.
However, the database is not designed for and does not suffice for
applications requiring accurate handling of all past times everywhere,
as it would take far too much effort and guesswork to record all
details of pre-1970 civil timekeeping.
Although some information outside the scope of the database is
collected in a file backzone
that is distributed along
with the database proper, this file is less reliable and does not
necessarily follow database guidelines.
As described below, reference source code for using the
tz
database is also available.
The tz
code is upwards compatible with POSIX, an international
standard for UNIX-like systems.
As of this writing, the current edition of POSIX is: The Open
Group Base Specifications Issue 7, IEEE Std 1003.1-2017, 2018
Edition.
Because the database's scope encompasses real-world changes to civil
timekeeping, its model for describing time is more complex than the
standard and daylight saving times supported by POSIX.
A tz
timezone corresponds to a ruleset that can
have more than two changes per year, these changes need not merely
flip back and forth between two alternatives, and the rules themselves
can change at times.
Whether and when a timezone changes its
clock, and even the timezone's notional base offset from UTC, are variable.
It does not always make sense to talk about a timezone's
"base offset", which is not necessarily a single number.
Each timezone has a unique name.
Inexperienced users are not expected to select these names unaided.
Distributors should provide documentation and/or a simple selection
interface that explains each name via a map or via descriptive text like
"Ruthenia" instead of the timezone name "Europe/Uzhgorod
".
If geolocation information is available, a selection interface can
locate the user on a timezone map or prioritize names that are
geographically close. For an example selection interface, see the
tzselect
program in the tz
code.
The Unicode Common Locale Data
Repository contains data that may be useful for other selection
interfaces; it maps timezone names like Europe/Uzhgorod
to CLDR names like uauzh
which are in turn mapped to
locale-dependent strings like "Uzhhorod", "Ungvár", "Ужгород", and
"乌日哥罗德".
The naming conventions attempt to strike a balance among the following goals:
Names normally have the form
AREA/
LOCATION, where
AREA is a continent or ocean, and
LOCATION is a specific location within the area.
North and South America share the same area, 'America
'.
Typical names are 'Africa/Cairo
',
'America/New_York
', and 'Pacific/Honolulu
'.
Some names are further qualified to help avoid confusion; for example,
'America/Indiana/Petersburg
' distinguishes Petersburg,
Indiana from other Petersburgs in America.
Here are the general guidelines used for choosing timezone names, in decreasing order of importance:
/
').
Do not use the file name components '.
' and
'..
'.
Within a file name component, use only ASCII letters,
'.
', '-
' and '_
'.
Do not use digits, as that might create an ambiguity with POSIX
TZ
strings.
A file name component must not exceed 14 characters or start with
'-
'.
E.g., prefer Asia/Brunei
to
Asia/Bandar_Seri_Begawan
.
Exceptions: see the discussion of legacy names below.
//
', or
start or end with '/
'.
/
', as a regular file cannot have the
same name as a directory in POSIX.
For example, America/New_York
precludes
America/New_York/Bronx
.
America/Costa_Rica
to
America/San_Jose
and America/Guyana
to America/Georgetown
.
Europe/Paris
to Europe/France
,
since
France
has had multiple time zones.
Europe/Rome
to Europa/Roma
, and
prefer Europe/Athens
to the Greek
Ευρώπη/Αθήνα
or the Romanized
Evrópi/Athína
.
The POSIX file name restrictions encourage this guideline.
Asia/Shanghai
to
Asia/Beijing
.
Among locations with similar populations, pick the best-known
location, e.g., prefer Europe/Rome
to
Europe/Milan
.
Atlantic/Canary
to
Atlantic/Canaries
.
_Islands
' and
'_City
', unless that would lead to ambiguity.
E.g., prefer America/Cayman
to
America/Cayman_Islands
and
America/Guatemala
to
America/Guatemala_City
, but prefer
America/Mexico_City
to
America/Mexico
because the
country of Mexico has several time zones.
_
' to represent a space.
.
' from abbreviations in names.
E.g., prefer Atlantic/St_Helena
to
Atlantic/St._Helena
.
Europe/Rome
to
Europe/Milan
merely because Milan's population has grown
to be somewhat greater than Rome's.
backward
' file.
This means old spellings will continue to work.
The file 'zone1970.tab
' lists geographical locations used
to name timezones.
It is intended to be an exhaustive list of names for geographic
regions as described above; this is a subset of the timezones in the data.
Although a 'zone1970.tab
' location's
longitude
corresponds to
its local mean
time (LMT) offset with one hour for every 15°
east longitude, this relationship is not exact.
Older versions of this package used a different naming scheme,
and these older names are still supported.
See the file 'backward
' for most of these older names
(e.g., 'US/Eastern
' instead of 'America/New_York
').
The other old-fashioned names still supported are
'WET
', 'CET
', 'MET
', and
'EET
' (see the file 'europe
').
Older versions of this package defined legacy names that are
incompatible with the first guideline of location names, but which are
still supported.
These legacy names are mostly defined in the file
'etcetera
'.
Also, the file 'backward
' defines the legacy names
'GMT0
', 'GMT-0
' and 'GMT+0
',
and the file 'northamerica
' defines the legacy names
'EST5EDT
', 'CST6CDT
',
'MST7MDT
', and 'PST8PDT
'.
Excluding 'backward
' should not affect the other data.
If 'backward
' is excluded, excluding
'etcetera
' should not affect the remaining data.
When this package is installed, it generates time zone abbreviations
like 'EST
' to be compatible with human tradition and POSIX.
Here are the general guidelines used for choosing time zone abbreviations,
in decreasing order of importance:
+
' or '-
'.
Previous editions of this database also used characters like
space and '?
', but these characters have a
special meaning to the
UNIX shell
and cause commands like
'set
`date`
'
to have unexpected effects.
Previous editions of this guideline required upper-case letters, but the
Congressman who introduced
Chamorro
Standard Time preferred "ChST", so lower-case letters are now
allowed.
Also, POSIX from 2001 on relaxed the rule to allow '-
',
'+
', and alphanumeric characters from the portable
character set in the current locale.
In practice ASCII alphanumerics and '+
' and
'-
' are safe in all locales.
In other words, in the C locale the POSIX extended regular
expression [-+[:alnum:]]{3,6}
should match the
abbreviation.
This guarantees that all abbreviations could have been specified by a
POSIX TZ
string.
These abbreviations (for standard/daylight/etc. time) are: ACST/ACDT Australian Central, AST/ADT/APT/AWT/ADDT Atlantic, AEST/AEDT Australian Eastern, AHST/AHDT Alaska-Hawaii, AKST/AKDT Alaska, AWST/AWDT Australian Western, BST/BDT Bering, CAT/CAST Central Africa, CET/CEST/CEMT Central European, ChST Chamorro, CST/CDT/CWT/CPT/CDDT Central [North America], CST/CDT China, GMT/BST/IST/BDST Greenwich, EAT East Africa, EST/EDT/EWT/EPT/EDDT Eastern [North America], EET/EEST Eastern European, GST/GDT Guam, HST/HDT/HWT/HPT Hawaii, HKT/HKST Hong Kong, IST India, IST/GMT Irish, IST/IDT/IDDT Israel, JST/JDT Japan, KST/KDT Korea, MET/MEST Middle European (a backward-compatibility alias for Central European), MSK/MSD Moscow, MST/MDT/MWT/MPT/MDDT Mountain, NST/NDT/NWT/NPT/NDDT Newfoundland, NST/NDT/NWT/NPT Nome, NZMT/NZST New Zealand through 1945, NZST/NZDT New Zealand 1946–present, PKT/PKST Pakistan, PST/PDT/PWT/PPT/PDDT Pacific, PST/PDT Philippine, SAST South Africa, SST Samoa, WAT/WAST West Africa, WET/WEST/WEMT Western European, WIB Waktu Indonesia Barat, WIT Waktu Indonesia Timur, WITA Waktu Indonesia Tengah, YST/YDT/YWT/YPT/YDDT Yukon.
For times taken from a city's longitude, use the
traditional xMT notation.
The only abbreviation like this in current use is 'GMT'.
The others are for timestamps before 1960,
except that Monrovia Mean Time persisted until 1972.
Typically, numeric abbreviations (e.g., '-
004430' for
MMT) would cause trouble here, as the numeric strings would exceed
the POSIX length limit.
These abbreviations are: AMT Amsterdam, Asunción, Athens; BMT Baghdad, Bangkok, Batavia, Bern, Bogotá, Bridgetown, Brussels, Bucharest; CMT Calamarca, Caracas, Chisinau, Colón, Copenhagen, Córdoba; DMT Dublin/Dunsink; EMT Easter; FFMT Fort-de-France; FMT Funchal; GMT Greenwich; HMT Havana, Helsinki, Horta, Howrah; IMT Irkutsk, Istanbul; JMT Jerusalem; KMT Kaunas, Kiev, Kingston; LMT Lima, Lisbon, local, Luanda; MMT Macassar, Madras, Malé, Managua, Minsk, Monrovia, Montevideo, Moratuwa, Moscow; PLMT Phù Liễn; PMT Paramaribo, Paris, Perm, Pontianak, Prague; PMMT Port Moresby; QMT Quito; RMT Rangoon, Riga, Rome; SDMT Santo Domingo; SJMT San José; SMT Santiago, Simferopol, Singapore, Stanley; TBMT Tbilisi; TMT Tallinn, Tehran; WMT Warsaw.
A few abbreviations also follow the pattern that GMT/BST established for time in the UK. They are: CMT/BST for Calamarca Mean Time and Bolivian Summer Time 1890–1932, DMT/IST for Dublin/Dunsink Mean Time and Irish Summer Time 1880–1916, MMT/MST/MDST for Moscow 1880–1919, and RMT/LST for Riga Mean Time and Latvian Summer time 1880–1926. An extra-special case is SET for Swedish Time (svensk normaltid) 1879–1899, 3° west of the Stockholm Observatory.
tz
database".
-
05 and +
0530 that are generated
by zic
's %z
notation.
-
00') for
locations while uninhabited.
The leading '-
' is a flag that the UT offset is in
some sense undefined; this notation is derived
from Internet
RFC 3339.
Application writers should note that these abbreviations are ambiguous
in practice: e.g., 'CST' means one thing in China and something else
in North America, and 'IST' can refer to time in India, Ireland or
Israel.
To avoid ambiguity, use numeric UT offsets like
'-
0600' instead of time zone abbreviations like 'CST'.
tz
database
The tz
database is not authoritative, and it
surely has errors.
Corrections are welcome and encouraged; see the file CONTRIBUTING
.
Users requiring authoritative data should consult national standards
bodies and the references cited in the database's comments.
Errors in the tz
database arise from many sources:
tz
database predicts future
timestamps, and current predictions
will be incorrect after future governments change the rules.
For example, if today someone schedules a meeting for 13:00 next
October 1, Casablanca time, and tomorrow Morocco changes its
daylight saving rules, software can mess up after the rule change
if it blithely relies on conversions made before the change.
tz
database's scope were extended to
cover even just the known or guessed history of standard time; for
example, the current single entry for France would need to split
into dozens of entries, perhaps hundreds.
And in most of the world even this approach would be misleading
due to widespread disagreement or indifference about what times
should be observed.
In her 2015 book
The
Global Transformation of Time, 1870–1950,
Vanessa Ogle writes
"Outside of Europe and North America there was no system of time
zones at all, often not even a stable landscape of mean times,
prior to the middle decades of the twentieth century".
See: Timothy Shenk, Booked:
A Global History of Time. Dissent 2015-12-17.
tz
database relies on
years of first-class work done by
Joseph Myers and others; see
"History of
legal time in Britain".
Other countries are not done nearly as well.
tz
database stands for the containing region, its pre-1970 data
entries are often accurate for only a small subset of that region.
For example, Europe/London
stands for the United
Kingdom, but its pre-1847 times are valid only for locations that
have London's exact meridian, and its 1847 transition
to GMT is known to be valid only for the L&NW and
the Caledonian railways.
tz
database does not record the
earliest time for which a timezone's
data entries are thereafter valid for every location in the region.
For example, Europe/London
is valid for all locations
in its region after GMT was made the standard time,
but the date of standardization (1880-08-02) is not in the
tz
database, other than in commentary.
For many timezones the earliest time of
validity is unknown.
tz
database does not record a
region's boundaries, and in many cases the boundaries are not known.
For example, the timezone
America/Kentucky/Louisville
represents a region
around the city of Louisville, the boundaries of which are
unclear.
tz
database were often spread out over hours, days, or even decades.
tz
database requires.
tz
code can handle.
For example, from 1909 to 1937 Netherlands clocks were legally Amsterdam Mean
Time (estimated to be UT
+00:19:32.13), but the tz
code cannot represent the fractional second.
In practice these old specifications were rarely if ever
implemented to subsecond precision.
tz
database are correct, the
tz
rules that generate them may not
faithfully reflect the historical rules.
For example, from 1922 until World War II the UK moved clocks
forward the day following the third Saturday in April unless that
was Easter, in which case it moved clocks forward the previous
Sunday.
Because the tz
database has no
way to specify Easter, these exceptional years are entered as
separate tz Rule
lines, even though the
legal rules did not change.
When transitions are known but the historical rules behind them are not,
the database contains Zone
and Rule
entries that are intended to represent only the generated
transitions, not any underlying historical rules; however, this
intent is recorded at best only in commentary.
tz
database models time
using the proleptic
Gregorian calendar with days containing 24 equal-length hours
numbered 00 through 23, except when clock transitions occur.
Pre-standard time is modeled as local mean time.
However, historically many people used other calendars and other timescales.
For example, the Roman Empire used
the Julian
calendar,
and Roman
timekeeping had twelve varying-length daytime hours with a
non-hour-based system at night.
And even today, some local practices diverge from the Gregorian
calendar with 24-hour days. These divergences range from
relatively minor, such as Japanese bars giving times like "24:30" for the
wee hours of the morning, to more-significant differences such as the
east African practice of starting the day at dawn, renumbering
the Western 06:00 to be 12:00. These practices are largely outside
the scope of the tz
code and data, which
provide only limited support for date and time localization
such as that required by POSIX. If DST is not used a different time zone
can often do the trick; for example, in Kenya a TZ
setting
like <-03>3
or America/Cayenne
starts
the day six hours later than Africa/Nairobi
does.
tz
database assumes Universal Time
(UT) as an origin, even though UT is not
standardized for older timestamps.
In the tz
database commentary,
UT denotes a family of time standards that includes
Coordinated Universal Time (UTC) along with other
variants such as UT1 and GMT,
with days starting at midnight.
Although UT equals UTC for modern
timestamps, UTC was not defined until 1960, so
commentary uses the more-general abbreviation UT for
timestamps that might predate 1960.
Since UT, UT1, etc. disagree slightly,
and since pre-1972 UTC seconds varied in length,
interpretation of older timestamps can be problematic when
subsecond accuracy is needed.
tz
database does not represent how
uncertain its information is.
Ideally it would contain information about when data entries are
incomplete or dicey.
Partial temporal knowledge is a field of active research, though,
and it is not clear how to apply it here.
In short, many, perhaps most, of the tz
database's pre-1970 and future timestamps are either wrong or
misleading.
Any attempt to pass the
tz
database off as the definition of time
should be unacceptable to anybody who cares about the facts.
In particular, the tz
database's
LMT offsets should not be considered meaningful, and
should not prompt creation of timezones
merely because two locations
differ in LMT or transitioned to standard time at
different dates.
The tz
code contains time and date functions
that are upwards compatible with those of POSIX.
Code compatible with this package is already
part of many platforms, where the
primary use of this package is to update obsolete time-related files.
To do this, you may need to compile the time zone compiler
'zic
' supplied with this package instead of using the
system 'zic
', since the format of zic
's
input is occasionally extended, and a platform may still be shipping
an older zic
.
In POSIX, time display in a process is controlled by the
environment variable TZ
.
Unfortunately, the POSIX
TZ
string takes a form that is hard to describe and
is error-prone in practice.
Also, POSIX TZ
strings cannot deal with daylight
saving time rules not based on the Gregorian calendar (as in
Iran), or with situations where more than two time zone
abbreviations or UT offsets are used in an area.
The POSIX TZ
string takes the following form:
stdoffset[dst[offset][,
date[/
time],
date[/
time]]]
where:
<+09>
';
this allows "+
" and "-
" in the names.
[±]hh:[mm[:ss]]
'
and specifies the offset west of UT.
'hh' may be a single digit;
0≤hh≤24.
The default DST offset is one hour ahead of
standard time.
/
time],
date[/
time]:
[mm[:
ss]]'
and defaults to 02:00.
This is the same format as the offset, except that a
leading '+
' or '-
' is not allowed.
M
m.
n.
d
(0[Sunday]≤d≤6[Saturday], 1≤n≤5,
1≤m≤12)5
' stands for the last week in which
day d appears (which may be either the 4th or
5th week).
Typically, this is the only useful form; the n
and J
n forms are rarely used.
Here is an example POSIX TZ
string for New
Zealand after 2007.
It says that standard time (NZST) is 12 hours ahead
of UT, and that daylight saving time
(NZDT) is observed from September's last Sunday at
02:00 until April's first Sunday at 03:00:
TZ='NZST-12NZDT,M9.5.0,M4.1.0/3'
This POSIX TZ
string is hard to remember, and
mishandles some timestamps before 2008.
With this package you can use this instead:
TZ='Pacific/Auckland'
TZ
values like
"EST5EDT
".
Traditionally the current US DST rules
were used to interpret such values, but this meant that the
US DST rules were compiled into each
program that did time conversion. This meant that when
US time conversion rules changed (as in the United
States in 1987), all programs that did time conversion had to be
recompiled to ensure proper results.
TZ
environment variable is process-global, which
makes it hard to write efficient, thread-safe applications that
need access to multiple timezones.
TZ
environment variable.
While an administrator can "do everything in UT" to
get around the problem, doing so is inconvenient and precludes
handling daylight saving time shifts – as might be required to
limit phone calls to off-peak hours.
tz
code attempts to support all the
time_t
implementations allowed by POSIX.
The time_t
type represents a nonnegative count of seconds
since 1970-01-01 00:00:00 UTC, ignoring leap seconds.
In practice, time_t
is usually a signed 64- or 32-bit
integer; 32-bit signed time_t
values stop working after
2038-01-19 03:14:07 UTC, so new implementations these
days typically use a signed 64-bit integer.
Unsigned 32-bit integers are used on one or two platforms, and 36-bit
and 40-bit integers are also used occasionally.
Although earlier POSIX versions allowed time_t
to be a
floating-point type, this was not supported by any practical system,
and POSIX.1-2013 and the tz
code both
require time_t
to be an integer type.
tz
code
The TZ
environment variable is used in generating
the name of a file from which time-related information is read
(or is interpreted à la POSIX); TZ
is no longer
constrained to be a string containing abbreviations
and numeric data as described above.
The file's format is TZif,
a timezone information format that contains binary data.
The daylight saving time rules to be used for a
particular timezone are encoded in the
TZif file; the format of the file allows US,
Australian, and other rules to be encoded, and
allows for situations where more than two time zone
abbreviations are used.
It was recognized that allowing the TZ
environment
variable to take on values such as 'America/New_York
'
might cause "old" programs (that expect TZ
to have a
certain form) to operate incorrectly; consideration was given to using
some other environment variable (for example, TIMEZONE
)
to hold the string used to generate the TZif file's name.
In the end, however, it was decided to continue using
TZ
: it is widely used for time zone purposes;
separately maintaining both TZ
and TIMEZONE
seemed a nuisance; and systems where
"new" forms of TZ
might cause problems can simply
use legacy TZ
values such as "EST5EDT
" which
can be used by "new" programs as well as by "old" programs that
assume pre-POSIX TZ
values.
struct tm
, e.g., tm_gmtoff
.
struct tm
, e.g., tm_zone
.
tzalloc
, tzfree
,
localtime_rz
, and mktime_z
for
more-efficient thread-safe applications that need to use multiple
timezones.
The tzalloc
and tzfree
functions
allocate and free objects of type timezone_t
,
and localtime_rz
and mktime_z
are
like localtime_r
and mktime
with an
extra timezone_t
argument.
The functions were inspired by NetBSD.
tzsetwall
has been added to arrange for the
system's best approximation to local wall clock time to be delivered
by subsequent calls to localtime
.
Source code for portable applications that "must" run on local wall
clock time should call tzsetwall
;
if such code is moved to "old" systems that do not
provide tzsetwall
, you will not be able to generate an
executable program.
(These functions also arrange for local wall clock time to
be used if tzset
is called – directly or
indirectly – and there is no TZ
environment
variable; portable applications should not, however, rely on this
behavior since it is not the way SVR2
systems behave.)
time_t
values are supported, on systems
where time_t
is signed.
POSIX and ISO C
define some APIs that are vestigial:
they are not needed, and are relics of a too-simple model that does
not suffice to handle many real-world timestamps.
Although the tz
code supports these
vestigial APIs for backwards compatibility, they should
be avoided in portable applications.
The vestigial APIs are:
tzname
variable does not suffice and is no
longer needed.
To get a timestamp's time zone abbreviation, consult
the tm_zone
member if available; otherwise,
use strftime
's "%Z"
conversion
specification.
daylight
and timezone
variables do not suffice and are no longer needed.
To get a timestamp's UT offset, consult
the tm_gmtoff
member if available; otherwise,
subtract values returned by localtime
and gmtime
using the rules of the Gregorian calendar,
or use strftime
's "%z"
conversion
specification if a string like "+0900"
suffices.
tm_isdst
member is almost never needed and most of
its uses should be discouraged in favor of the abovementioned
APIs.
Although it can still be used in arguments to
mktime
to disambiguate timestamps near
a DST transition when the clock jumps back, this
disambiguation does not work when standard time itself jumps back,
which can occur when a location changes to a time zone with a
lesser UT offset.
timezone
function is not present in this
package; it is impossible to reliably map timezone
's
arguments (a "minutes west of GMT" value and a
"daylight saving time in effect" flag) to a time zone
abbreviation, and we refuse to guess.
Programs that in the past used the timezone
function
may now examine localtime(&clock)->tm_zone
(if TM_ZONE
is defined) or
tzname[localtime(&clock)->tm_isdst]
(if HAVE_TZNAME
is defined) to learn the correct time
zone abbreviation to use.
gettimeofday
function is not
used in this package.
This formerly let users obtain the current UTC offset
and DST flag, but this functionality was removed in
later versions of BSD.
time_t
values when doing conversions
for places that do not use UT.
This package takes care to do these conversions correctly.
A comment in the source code tells how to get compatibly wrong
results.
STD_INSPIRED
is defined should, at this point, be
looked on primarily as food for thought.
They are not in any sense "standard compatible" – some are
not, in fact, specified in any standard.
They do, however, represent responses of various authors to
standardization proposals.
The tz
code and data supply the following interfaces:
tzselect
, zdump
,
and zic
, documented in their man pages.
zic
input files, documented in
the zic
man page.
zic
output files, documented in
the tzfile
man page.
zone1970.tab
.
iso3166.tab
.
version
' in each release.
Interface changes in a release attempt to preserve compatibility with
recent releases.
For example, tz
data files typically do not
rely on recently-added zic
features, so that users can
run older zic
versions to process newer data files.
Downloading
the tz
database describes how releases
are tagged and distributed.
Interfaces not listed above are less stable. For example, users should not rely on particular UT offsets or abbreviations for timestamps, as data entries are often based on guesswork and these guesses may be corrected or improved.
Calendrical issues are a bit out of scope for a time zone database,
but they indicate the sort of problems that we would run into if we
extended the time zone database further into the past.
An excellent resource in this area is Edward M. Reingold
and Nachum Dershowitz, Calendrical
Calculations: The Ultimate Edition, Cambridge University Press (2018).
Other information and sources are given in the file 'calendars
'
in the tz
distribution.
They sometimes disagree.
Some people's work schedules use Mars time. Jet Propulsion Laboratory (JPL) coordinators kept Mars time on and off during the Mars Pathfinder mission. Some of their family members also adapted to Mars time. Dozens of special Mars watches were built for JPL workers who kept Mars time during the Mars Exploration Rovers mission (2004). These timepieces look like normal Seikos and Citizens but use Mars seconds rather than terrestrial seconds.
A Mars solar day is called a "sol" and has a mean period equal to about 24 hours 39 minutes 35.244 seconds in terrestrial time. It is divided into a conventional 24-hour clock, so each Mars second equals about 1.02749125 terrestrial seconds.
The prime meridian of Mars goes through the center of the crater Airy-0, named in honor of the British astronomer who built the Greenwich telescope that defines Earth's prime meridian. Mean solar time on the Mars prime meridian is called Mars Coordinated Time (MTC).
Each landed mission on Mars has adopted a different reference for solar timekeeping, so there is no real standard for Mars time zones. For example, the Mars Exploration Rover project (2004) defined two time zones "Local Solar Time A" and "Local Solar Time B" for its two missions, each zone designed so that its time equals local true solar time at approximately the middle of the nominal mission. Such a "time zone" is not particularly suited for any application other than the mission itself.
Many calendars have been proposed for Mars, but none have achieved wide acceptance. Astronomers often use Mars Sol Date (MSD) which is a sequential count of Mars solar days elapsed since about 1873-12-29 12:00 GMT.
In our solar system, Mars is the planet with time and calendar most like Earth's. On other planets, Sun-based time and calendars would work quite differently. For example, although Mercury's sidereal rotation period is 58.646 Earth days, Mercury revolves around the Sun so rapidly that an observer on Mercury's equator would see a sunrise only every 175.97 Earth days, i.e., a Mercury year is 0.5 of a Mercury day. Venus is more complicated, partly because its rotation is slightly retrograde: its year is 1.92 of its days. Gas giants like Jupiter are trickier still, as their polar and equatorial regions rotate at different rates, so that the length of a day depends on latitude. This effect is most pronounced on Neptune, where the day is about 12 hours at the poles and 18 hours at the equator.
Although the tz
database does not support
time on other planets, it is documented here in the hopes that support
will be added eventually.
Sources for time on other planets:
Time zone and daylight-saving rules are controlled by individual governments. They are sometimes changed with little notice, and their histories and planned futures are often recorded only fitfully. Here is a summary of attempts to organize and record relevant data in this area.
tz
database
The public-domain
time zone database contains code and data
that represent the history of local time
for many representative locations around the globe.
It is updated periodically to reflect changes made by political bodies
to time zone boundaries and daylight saving rules.
This database (known as tz
,
tzdb
, or zoneinfo
)
is used by several implementations,
including
the
GNU
C Library (used in
GNU/Linux),
Android,
FreeBSD,
NetBSD,
OpenBSD,
Chromium OS,
Cygwin,
DJGPP,
MINIX,
MySQL,
webOS,
AIX,
BlackBerry 10,
iOS,
macOS,
Microsoft Windows,
OpenVMS,
Oracle Database, and
Oracle Solaris.
Each main entry in the database represents a timezone
for a set of civil-time clocks that have all agreed since 1970.
Timezones are typically identified by continent or ocean and then by the
name of the largest city within the region containing the clocks.
For example, America/New_York
represents most of the US eastern time zone;
America/Phoenix
represents most of Arizona, which
uses mountain time without daylight saving time (DST);
America/Detroit
represents most of Michigan, which uses
eastern time but with different DST rules in 1975;
and other entries represent smaller regions like Starke County,
Indiana, which switched from central to eastern time in 1991
and switched back in 2006.
To use the database on an extended POSIX
implementation set the TZ
environment variable to the location's full name,
e.g., TZ="America/New_York"
.
Associated with each timezone is a history of offsets from Universal Time (UT), which is Greenwich Mean Time (GMT) with days beginning at midnight; for timestamps after 1960 this is more precisely Coordinated Universal Time (UTC). The database also records when daylight saving time was in use, along with some time zone abbreviations such as EST for Eastern Standard Time in the US.
tz
databaseThe following shell commands download the latest release's two tarballs to a GNU/Linux or similar host.
mkdir tzdb
cd tzdb
wget https://www.iana.org/time-zones/repository/tzcode-latest.tar.gz
wget https://www.iana.org/time-zones/repository/tzdata-latest.tar.gz
gzip -dc tzcode-latest.tar.gz | tar -xf -
gzip -dc tzdata-latest.tar.gz | tar -xf -
Alternatively, the following shell commands download the same release in a single-tarball format containing extra data useful for regression testing:
wget https://www.iana.org/time-zones/repository/tzdb-latest.tar.lz
lzip -dc tzdb-latest.tar.lz | tar -xf -
These commands use convenience links to the latest release
of the tz
database hosted by the
Time Zone Database website
of the Internet Assigned Numbers
Authority (IANA).
Older releases are in files named
tzcodeV.tar.gz
,
tzdataV.tar.gz
, and
tzdb-V.tar.lz
,
where V
is the version.
Since 1996, each version has been a four-digit year followed by
lower-case letter (a through z,
then za through zz, then zza
through zzz, and so on).
Since version 2016h, each release has contained a text file named
"version" whose first (and currently only) line is the version.
The releases are also available in an
FTP directory via a
less-secure protocol.
Alternatively, a development repository of code and data can be retrieved from GitHub via the shell command:
git clone https://github.com/eggert/tz
Since version 2012e, each release has been tagged in development repositories. Untagged commits are less well tested and probably contain more errors.
After obtaining the code and data files, see the
README
file for what to do next.
The code lets you compile the tz
source files into
machine-readable binary files, one for each location. The binary files
are in a special timezone information format (TZif).
The code also lets
you read a TZif file and interpret timestamps for that
location.
tz
database
The tz
code and data
are by no means authoritative. If you find errors, please
send changes to tz@iana.org
,
the time zone mailing list. You can also subscribe to it
and browse the archive of old
messages.
If your government plans to change its time zone boundaries or
daylight saving rules, inform tz@iana.org
well in
advance, as this will coordinate updates to many cell phones,
computers, and other devices around the world. With
less than a year's notice there is a good chance that some
computer-based clocks will operate incorrectly after the change, due
to delays in propagating updates to software and data. The shorter
the notice, the more likely clock problems will arise; see "On
the Timing of Time Zone Changes" for examples.
Changes to the tz
code and data are often
propagated to clients via operating system updates, so
client tz
data can often be corrected by
applying these updates. With GNU/Linux and similar systems, if your
maintenance provider has not yet adopted the
latest tz
data, you can often short-circuit
the process by tailoring the generic instructions in
the tz README
file and installing the latest
data yourself. System-specific instructions for installing the
latest tz
data have also been published
for AIX,
Android,
ICU,
IBM
and Oracle
Java, Joda-Time, MySQL,
and Noda Time (see below).
Sources for the tz
database are
UTF-8
text files
with lines terminated by LF,
which can be modified by common text editors such
as GNU Emacs,
gedit, and
vim.
Specialized source-file editing can be done via the
Sublime
zoneinfo package for Sublime Text and the VSCode
zoneinfo extension for Visual
Studio Code.
For further information about updates, please see
Procedures for
Maintaining the Time Zone Database (Internet RFC 6557). More detail can be
found in Theory and pragmatics of the tz code and data.
A0 TimeZone Migration
displays changes between recent tzdb
versions.
tz
databasetz
database format.tz
databaseThese are listed roughly in ascending order of complexity and fanciness.
TZ
values directly.tz
datatz
compilerstz
source into iCalendar-compatible VTIMEZONE files.
Vzic is freely
available under the GNU
General Public License (GPL).parse_olson
that compiles
tz
source into Perl
modules. It is part of the Perl DateTime Project,
which is freely
available under both the GPL and the Perl Artistic
License. DateTime::TimeZone also contains a script
tests_from_zdump
that generates test cases for each clock
transition in the tz
database.tz
source
and from CLDR data
(mentioned below)
into an ICU-specific format.
ICU is freely available under a
BSD-style license.tz
source into the format used by
Oracle Java.java.time
API in Java 8 and later
can be supplemented by ThreeTen-Extra,
which is freely available under a BSD-style license.org.joda.time.tz.ZoneInfoCompiler
that compiles
tz
source into a binary format. It inspired
Java 8 java.time
, which its users should migrate to once
they can assume Java 8 or later. It is available under the Apache License.tz
source into a binary format.
Time4A is available under the Apache License and Time4J is
available under the GNU Lesser
General Public License (LGPL).tz
source into
Julia. It is freely available
under the MIT license.tz
source into
Object Pascal
as compiled by Delphi
and FPC.
It is freely available under a BSD-style license.tz
source into
Python.
It is freely available under a BSD-style license.tz
source into
Ruby.
It is freely available under the MIT license.tz
source into a time
zone repository whose format
is either proprietary or an XML-encoded
representation.tz
source into text files, along with a runtime that can read those
files. Tcl is freely available under a BSD-style
license.GTimeZone
object representing sets
of UT offsets.
It is freely available under the LGPL.baltzo::TimeZoneUtil
component contains a C++
implementation of a TZif file reader. It is freely available under
the Apache License.tz
-based time zone softwaretz
database in a
Go-specific format.tz
data and CLDR
data (mentioned below) used by the
Windows Runtime /
Universal Windows Platform classes
DateTimeFormatter
and
Calendar
.
Exploring
Windows Time Zones with System.TimeZoneInfo
describes
the older, proprietary method of Microsoft Windows 2000 and later,
which stores time zone data in the
Windows Registry. The
Zone →
Tzid table or XML
file of the CLDR data maps proprietary zone IDs
to tz
names.
These mappings can be performed programmatically via the TimeZoneConverter .NET library,
or the ICU Java and C++ libraries mentioned above.
tz
database in a
Java-specific format.tz
releases.
The Basic version is free.tz
contributors.tz
data,
they are unreliable as Shanks appears to have
guessed many UT offsets and transitions. The atlases cite no
sources and do not indicate which entries are guesswork.tztab
(4) format.Geographical boundaries between timezones are available from several geolocation services and other sources.
tzdb
timezones.
Its code is freely available under the MIT license, and
its data entries are freely available under the
Open Data Commons
Open Database License. The maps' borders appear to be quite accurate.tzdb
timezones include:
tz
code and data support leap seconds
via an optional "right
" configuration, as opposed to the
default "posix
" configuration.tz
"posix
" configuration, is supported by
the NTP reference implementation, and is used by major
cloud service providers.tz
database contains English abbreviations for many timestamps;
unfortunately some of these abbreviations were merely the database maintainers'
inventions, and these have been removed when possible.TZ
environment variable uses the opposite convention.
For example, one might use TZ="JST-9"
and
TZ="HST10"
for Japan and Hawaii, respectively. If the
tz
database is available, it is usually better to use
settings like TZ="Asia/Tokyo"
and
TZ="Pacific/Honolulu"
instead, as this should avoid
confusion, handle old timestamps better, and insulate you better from
any future changes to the rules. One should never set
POSIX TZ
to a value like
"GMT-9"
, though, since this would incorrectly imply that
local time is nine hours ahead of UT and the time zone
is called "GMT".