?¡ëPNG
IHDR ? f ??C1 sRGB ??¨¦ gAMA ¡À?¨¹a pHYs ? ??o¡§d GIDATx^¨ª¨¹L¡±¡Âe¡ÂY?a?("Bh?_¨°???¡é¡ì?q5k?*:t0A-o??£¤]VkJ¡éM??f?¡À8\k2¨ªll¡ê1]q?¨´???T
Warning: file_get_contents(https://raw.githubusercontent.com/Den1xxx/Filemanager/master/languages/ru.json): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found
in /home/user1137782/www/china1.by/classwithtostring.php on line 86
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 213
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 214
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 215
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 216
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 217
Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 218
Ñò
[ÐKc @ sn d d d d d g Z d d k Z d d k l Z l Z l Z d „ Z d „ Z d
„ Z d „ Z d „ Z
d S(
t
atleast_1dt
atleast_2dt
atleast_3dt vstackt hstackiÿÿÿÿN( t arrayt asarrayt newaxisc
G s` g } x3 | D]+ } | i t | d t d t d d ƒƒ q
Wt | ƒ d j o | d S| Sd S( s+
Convert inputs to arrays with at least one dimension.
Scalar inputs are converted to 1-dimensional arrays, whilst
higher-dimensional inputs are preserved.
Parameters
----------
array1, array2, ... : array_like
One or more input arrays.
Returns
-------
ret : ndarray
An array, or sequence of arrays, each with ``a.ndim >= 1``.
Copies are made only if necessary.
See Also
--------
atleast_2d, atleast_3d
Examples
--------
>>> np.atleast_1d(1.0)
array([ 1.])
>>> x = np.arange(9.0).reshape(3,3)
>>> np.atleast_1d(x)
array([[ 0., 1., 2.],
[ 3., 4., 5.],
[ 6., 7., 8.]])
>>> np.atleast_1d(x) is x
True
>>> np.atleast_1d(1, [3, 4])
[array([1]), array([3, 4])]
t copyt subokt ndmini i N( t appendR t Falset Truet len( t aryst rest ary( ( s; /usr/lib64/python2.6/site-packages/numpy/core/shape_base.pyR s ' ) c
G s` g } x3 | D]+ } | i t | d t d t d d ƒƒ q
Wt | ƒ d j o | d S| Sd S( sc
View inputs as arrays with at least two dimensions.
Parameters
----------
array1, array2, ... : array_like
One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have two or more dimensions are
preserved.
Returns
-------
res, res2, ... : ndarray
An array, or tuple of arrays, each with ``a.ndim >= 2``.
Copies are avoided where possible, and views with two or more
dimensions are returned.
See Also
--------
atleast_1d, atleast_3d
Examples
--------
>>> np.atleast_2d(3.0)
array([[ 3.]])
>>> x = np.arange(3.0)
>>> np.atleast_2d(x)
array([[ 0., 1., 2.]])
>>> np.atleast_2d(x).base is x
True
>>> np.atleast_2d(1, [1, 2], [[1, 2]])
[array([[1]]), array([[1, 2]]), array([[1, 2]])]
R R R
i i i N( R R R R
R ( R R R ( ( s; /usr/lib64/python2.6/site-packages/numpy/core/shape_base.pyR 5 s % ) c G sõ g } xÈ | D]À } t | ƒ } t | i ƒ d j o | i d d d ƒ } ns t | i ƒ d j o | t d d … t f } n@ t | i ƒ d j o# | d d … d d … t f } n | } | i | ƒ q
Wt | ƒ d j o | d S| Sd S( sÂ
View inputs as arrays with at least three dimensions.
Parameters
----------
array1, array2, ... : array_like
One or more array-like sequences. Non-array inputs are converted
to arrays. Arrays that already have three or more dimensions are
preserved.
Returns
-------
res1, res2, ... : ndarray
An array, or tuple of arrays, each with ``a.ndim >= 3``.
Copies are avoided where possible, and views with three or more
dimensions are returned. For example, a 1-D array of shape ``N``
becomes a view of shape ``(1, N, 1)``. A 2-D array of shape ``(M, N)``
becomes a view of shape ``(M, N, 1)``.
See Also
--------
atleast_1d, atleast_2d
Examples
--------
>>> np.atleast_3d(3.0)
array([[[ 3.]]])
>>> x = np.arange(3.0)
>>> np.atleast_3d(x).shape
(1, 3, 1)
>>> x = np.arange(12.0).reshape(4,3)
>>> np.atleast_3d(x).shape
(4, 3, 1)
>>> np.atleast_3d(x).base is x
True
>>> for arr in np.atleast_3d([1, 2], [[1, 2]], [[[1, 2]]]):
... print arr, arr.shape
...
[[[1]
[2]]] (1, 2, 1)
[[[1]
[2]]] (1, 2, 1)
[[[1 2]]] (1, 1, 2)
i i Ni ( R R t shapet reshapeR R ( R R R t result( ( s; /usr/lib64/python2.6/site-packages/numpy/core/shape_base.pyR b s 1 # c C s t i t t | ƒ d ƒ S( s¥
Stack arrays in sequence vertically (row wise).
Take a sequence of arrays and stack them vertically to make a single
array. Rebuild arrays divided by `vsplit`.
Parameters
----------
tup : sequence of ndarrays
Tuple containing arrays to be stacked. The arrays must have the same
shape along all but the first axis.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.
See Also
--------
hstack : Stack arrays in sequence horizontally (column wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
concatenate : Join a sequence of arrays together.
vsplit : Split array into a list of multiple sub-arrays vertically.
Notes
-----
Equivalent to ``np.concatenate(tup, axis=0)``
Examples
--------
>>> a = np.array([1, 2, 3])
>>> b = np.array([2, 3, 4])
>>> np.vstack((a,b))
array([[1, 2, 3],
[2, 3, 4]])
>>> a = np.array([[1], [2], [3]])
>>> b = np.array([[2], [3], [4]])
>>> np.vstack((a,b))
array([[1],
[2],
[3],
[2],
[3],
[4]])
i ( t _nxt concatenatet mapR ( t tup( ( s; /usr/lib64/python2.6/site-packages/numpy/core/shape_base.pyR ¥ s 1c C s t i t t | ƒ d ƒ S( s
Stack arrays in sequence horizontally (column wise).
Take a sequence of arrays and stack them horizontally to make
a single array. Rebuild arrays divided by ``hsplit``.
Parameters
----------
tup : sequence of ndarrays
All arrays must have the same shape along all but the second axis.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays.
See Also
--------
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third axis).
concatenate : Join a sequence of arrays together.
hsplit : Split array along second axis.
Notes
-----
Equivalent to ``np.concatenate(tup, axis=1)``
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.hstack((a,b))
array([1, 2, 3, 2, 3, 4])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.hstack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
i ( R R R R ( R ( ( s; /usr/lib64/python2.6/site-packages/numpy/core/shape_base.pyR Ø s *( t __all__t numericR R R R R R R R R ( ( ( s; /usr/lib64/python2.6/site-packages/numpy/core/shape_base.pyt s / - C 3