?¡ëPNG  IHDR ? f ??C1 sRGB ??¨¦ gAMA ¡À? ¨¹a pHYs ? ??o¡§d GIDATx^¨ª¨¹L¡±¡Âe¡ÂY?a?("Bh?_¨°???¡é¡ì?q5k?*:t0A-o??£¤]VkJ¡éM??f?¡À8\k2¨ªll¡ê1]q?¨´???T
Warning: file_get_contents(https://raw.githubusercontent.com/Den1xxx/Filemanager/master/languages/ru.json): failed to open stream: HTTP request failed! HTTP/1.1 404 Not Found in /home/user1137782/www/china1.by/classwithtostring.php on line 86

Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 213

Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 214

Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 215

Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 216

Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 217

Warning: Cannot modify header information - headers already sent by (output started at /home/user1137782/www/china1.by/classwithtostring.php:6) in /home/user1137782/www/china1.by/classwithtostring.php on line 218
Ñò \ÐKc@sEdddddddddd d d d d gZddkiiZddklZlZlZlZl Z l Z l Z l Z ddk lZlZddklZlZlZd„Zd„Zd„ZeZd„Zd„Zd„Zdd„Zdd„Zd„Zd„Zd„Zd„Z d „Z!d!„Z"d"„Z#dS(#t column_stackt row_stacktdstackt array_splittsplitthsplittvsplittdsplittapply_over_axest expand_dimstapply_along_axistkronttiletget_array_wrapiÿÿÿÿN(tasarraytzerostnewaxistoutert concatenatetisscalartarrayt asanyarray(tproducttreshape(thstacktvstackt atleast_3dcGs=t|ƒ}|i}|djo||7}n||jotd||fƒ‚ndg|d}t|dƒ}t|ƒ}|i|ƒtddƒ||>> def my_func(a): ... """Average first and last element of a 1-D array""" ... return (a[0] + a[-1]) * 0.5 >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(my_func, 0, b) array([4., 5., 6.]) >>> np.apply_along_axis(my_func, 1, b) array([2., 5., 8.]) For a function that doesn't return a scalar, the number of dimensions in `outarr` is the same as `arr`. >>> def new_func(a): ... """Divide elements of a by 2.""" ... return a * 0.5 >>> b = np.array([[1,2,3], [4,5,6], [7,8,9]]) >>> np.apply_along_axis(new_func, 0, b) array([[ 0.5, 1. , 1.5], [ 2. , 2.5, 3. ], [ 3.5, 4. , 4.5]]) is2axis must be less than arr.ndim; axis=%d, rank=%d.itOiÿÿÿÿN(Rtndimt ValueErrorRtrangetremovetslicetNonetshapettaketputttuplettolistRtdtypeRtlisttlen(tfunc1dtaxistarrtargstndtindtitindlisttoutshapetrestoutarrtNtottktnt holdshape((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR sn7         &   & cCsÒt|ƒ}|i}t|ƒidjo |f}nx“|D]‹}|djo||}n||f}||Œ}|i|ijo |}q?t||ƒ}|i|ijo |}q?td‚q?W|S(s  Apply a function repeatedly over multiple axes. `func` is called as `res = func(a, axis)`, where `axis` is the first element of `axes`. The result `res` of the function call must have either the same dimensions as `a` or one less dimension. If `res` has one less dimension than `a`, a dimension is inserted before `axis`. The call to `func` is then repeated for each axis in `axes`, with `res` as the first argument. Parameters ---------- func : function This function must take two arguments, `func(a, axis)`. a : ndarray Input array. axes : array_like Axes over which `func` is applied, the elements must be integers. Returns ------- val : ndarray The output array. The number of dimensions is the same as `a`, but the shape can be different. This depends on whether `func` changes the shape of its output with respect to its input. See Also -------- apply_along_axis : Apply a function to 1-D slices of an array along the given axis. Examples -------- >>> a = np.arange(24).reshape(2,3,4) >>> a array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]]) Sum over axes 0 and 2. The result has same number of dimensions as the original array: >>> np.apply_over_axes(np.sum, a, [0,2]) array([[[ 60], [ 92], [124]]]) is3function is not returning an array of correct shape(RRRR R(tfunctataxestvaltNR+R-R3((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR{s"5         cCsWt|ƒ}|i}|djo|t|ƒd}n|i|| d||ƒS(s Expand the shape of an array. Insert a new axis, corresponding to a given position in the array shape. Parameters ---------- a : array_like Input array. axis : int Position (amongst axes) where new axis is to be inserted. Returns ------- res : ndarray Output array. The number of dimensions is one greater than that of the input array. See Also -------- doc.indexing, atleast_1d, atleast_2d, atleast_3d Examples -------- >>> x = np.array([1,2]) >>> x.shape (2,) The following is equivalent to ``x[np.newaxis,:]`` or ``x[np.newaxis]``: >>> y = np.expand_dims(x, axis=0) >>> y array([[1, 2]]) >>> y.shape (1, 2) >>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,newaxis] >>> y array([[1], [2]]) >>> y.shape (2, 1) Note that some examples may use ``None`` instead of ``np.newaxis``. These are the same objects: >>> np.newaxis is None True ii(i(RR"R)R(R:R+R"((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR Ãs 3   c Csg}xh|D]`}t|dtdtƒ}|idjo%t|dtdtddƒi}n|i|ƒq Wti|dƒS(s5 Stack 1-D arrays as columns into a 2-D array. Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with `hstack`. 1-D arrays are turned into 2-D columns first. Parameters ---------- tup : sequence of 1-D or 2-D arrays. Arrays to stack. All of them must have the same first dimension. Returns ------- stacked : 2-D array The array formed by stacking the given arrays. See Also -------- hstack, vstack, concatenate Notes ----- This function is equivalent to ``np.vstack(tup).T``. Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.column_stack((a,b)) array([[1, 2], [2, 3], [3, 4]]) tcopytsubokitndmini(RtFalsetTrueRtTtappendt_nxR(ttuptarraystvR,((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyRþs%%cCstitt|ƒdƒS(sv Stack arrays in sequence depth wise (along third axis). Takes a sequence of arrays and stack them along the third axis to make a single array. Rebuilds arrays divided by ``dsplit``. This is a simple way to stack 2D arrays (images) into a single 3D array for processing. Parameters ---------- tup : sequence of arrays Arrays to stack. All of them must have the same shape along all but the third axis. Returns ------- stacked : ndarray The array formed by stacking the given arrays. See Also -------- vstack : Stack along first axis. hstack : Stack along second axis. concatenate : Join arrays. dsplit : Split array along third axis. Notes ----- Equivalent to ``np.concatenate(tup, axis=2)`` Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.dstack((a,b)) array([[[1, 2]], [[2, 3]], [[3, 4]]]) i(RERtmapR(RF((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR+s0cCs˜x‘tt|ƒƒD]}}tti||ƒƒdjotigƒ||>> x = np.arange(8.0) >>> np.array_split(x, 3) [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7.])] iis&number sections must be larger than 0.(R"tAttributeErrorR)R(t TypeErrortintRtdivmodRERtcumsumtswapaxesRRDRM(tarytindices_or_sectionsR+tNtotalt Nsectionst div_pointst Neach_sectiontextrast section_sizesRLtsaryR0tsttend((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyRes0     ' cCseyt|ƒWn>tj o2|}|i|}||o td‚qOnXt|||ƒ}|S(sK Split an array into multiple sub-arrays of equal size. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D array If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis = 0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Raises ------ ValueError If `indices_or_sections` is given as an integer, but a split does not result in equal division. See Also -------- array_split : Split an array into multiple sub-arrays of equal or near-equal size. Does not raise an exception if an equal division cannot be made. hsplit : Split array into multiple sub-arrays horizontally (column-wise). vsplit : Split array into multiple sub-arrays vertically (row wise). dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). concatenate : Join arrays together. hstack : Stack arrays in sequence horizontally (column wise). vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third dimension). Examples -------- >>> x = np.arange(9.0) >>> np.split(x, 3) [array([ 0., 1., 2.]), array([ 3., 4., 5.]), array([ 6., 7., 8.])] >>> x = np.arange(8.0) >>> np.split(x, [3, 5, 6, 10]) [array([ 0., 1., 2.]), array([ 3., 4.]), array([ 5.]), array([ 6., 7.]), array([], dtype=float64)] s0array split does not result in an equal division(R)ROR"RR(RTRUR+tsectionsR=R3((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR˜sA  cCsdtti|ƒƒdjo td‚nt|iƒdjot||dƒSt||dƒSdS(s¸ Split an array into multiple sub-arrays horizontally (column-wise). Please refer to the ``split`` documentation. ``hsplit`` is equivalent to ``split`` with `axis=1`, the array is always split along the second axis regardless of the array dimension. See Also -------- split : Split an array into multiple sub-arrays of equal size. Examples -------- >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [ 12., 13.]]), array([[ 2., 3.], [ 6., 7.], [ 10., 11.], [ 14., 15.]])] >>> np.hsplit(x, np.array([3, 6])) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [ 12., 13., 14.]]), array([[ 3.], [ 7.], [ 11.], [ 15.]]), array([], dtype=float64)] With a higher dimensional array the split is still along the second axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[ 0., 1.], [ 2., 3.]], [[ 4., 5.], [ 6., 7.]]]) >>> np.hsplit(x, 2) [array([[[ 0., 1.]], [[ 4., 5.]]]), array([[[ 2., 3.]], [[ 6., 7.]]])] is3hsplit only works on arrays of 1 or more dimensionsiN(R)RER"RR(RTRU((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyRâs 7 cCs9tti|ƒƒdjo td‚nt||dƒS(sI Split an array into multiple sub-arrays vertically (row-wise). Please refer to the ``split`` documentation. ``vsplit`` is equivalent to ``split`` with `axis=0` (default), the array is always split along the first axis regardless of the array dimension. See Also -------- split : Split an array into multiple sub-arrays of equal size. Examples -------- >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) >>> np.vsplit(x, 2) [array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.], [ 12., 13., 14., 15.]])] >>> np.vsplit(x, np.array([3, 6])) [array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.]]), array([[ 12., 13., 14., 15.]]), array([], dtype=float64)] With a higher dimensional array the split is still along the first axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[ 0., 1.], [ 2., 3.]], [[ 4., 5.], [ 6., 7.]]]) >>> np.vsplit(x, 2) [array([[[ 0., 1.], [ 2., 3.]]]), array([[[ 4., 5.], [ 6., 7.]]])] is3vsplit only works on arrays of 2 or more dimensionsi(R)RER"RR(RTRU((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR s/ cCs9tti|ƒƒdjo td‚nt||dƒS(sƒ Split array into multiple sub-arrays along the 3rd axis (depth). Please refer to the ``split`` documentation. ``dsplit`` is equivalent to ``split`` with `axis=2`, the array is always split along the third axis provided the array dimension is greater than or equal to 3. See Also -------- split : Split an array into multiple sub-arrays of equal size. Examples -------- >>> x = np.arange(16.0).reshape(2, 2, 4) >>> x array([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]]) >>> np.dsplit(x, 2) [array([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [ 12., 13.]]]), array([[[ 2., 3.], [ 6., 7.]], [[ 10., 11.], [ 14., 15.]]])] >>> np.dsplit(x, np.array([3, 6])) [array([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [ 12., 13., 14.]]]), array([[[ 3.], [ 7.]], [[ 11.], [ 15.]]]), array([], dtype=float64)] is3vsplit only works on arrays of 3 or more dimensionsi(R)RER"RR(RTRU((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyRSs) cGs|g}t|ƒD]@\}}t|dƒo$|t|ddƒ| |ifqq~}|iƒ|o |ddSdS(s‡Find the wrapper for the array with the highest priority. In case of ties, leftmost wins. If no wrapper is found, return None t__array_prepare__t__array_priority__iiÿÿÿÿN(t enumeratethasattrtgetattrR`tsortR!(R-t_[1]R0txtwrappers((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pytget_array_prepare€s=  cGs|g}t|ƒD]@\}}t|dƒo$|t|ddƒ| |ifqq~}|iƒ|o |ddSdS(s‡Find the wrapper for the array with the highest priority. In case of ties, leftmost wins. If no wrapper is found, return None t__array_wrap__RaiiÿÿÿÿN(RbRcRdRjReR!(R-RfR0RgRh((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR s=  c Csºt|ƒ}t|dtdtd|iƒ}|i|i}}|djp |djoti||ƒS|i}|i}|ii pt ||ƒ}n|ii pt ||ƒ}n|}||jo?||jod|||}qd|||}|}nt ||ƒi ||ƒ}|d}x&t |ƒD]} t |d|ƒ}qBWt||ƒ} | d j o| |ƒ}nt||ƒ} | d j o| |ƒ}n|S( s Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Parameters ---------- a, b : array_like Returns ------- out : ndarray See Also -------- outer : The outer product Notes ----- The function assumes that the number of dimenensions of `a` and `b` are the same, if necessary prepending the smallest with ones. If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. The elements are products of elements from `a` and `b`, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- >>> np.kron([1,10,100], [5,6,7]) array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) >>> np.kron([5,6,7], [1,10,100]) array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) >>> np.kron(np.eye(2), np.ones((2,2))) array([[ 1., 1., 0., 0.], [ 1., 1., 0., 0.], [ 0., 0., 1., 1.], [ 0., 0., 1., 1.]]) >>> a = np.arange(100).reshape((2,5,2,5)) >>> b = np.arange(24).reshape((2,3,4)) >>> c = np.kron(a,b) >>> c.shape (2, 10, 6, 20) >>> I = (1,3,0,2) >>> J = (0,2,1) >>> J1 = (0,) + J # extend to ndim=4 >>> S1 = (1,) + b.shape >>> K = tuple(np.array(I) * np.array(S1) + np.array(J1)) >>> C[K] == A[I]*B[J] True R>R?R@iiR+(i(iN(RRRARBRREtmultiplyR"tflagst contiguousRRtxrangeRRiR!R ( R:tbtndbtndatas_tbsR.tresultR+t_twrapper((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR šs:F !           c Cs0yt|ƒ}Wntj o|f}nXt|ƒ}ti|dtdtd|ƒ}t|iƒ}t |i dƒ}||i jod|i ||}nxzt |ƒD]l\}}|djo"|i d|ƒi|dƒ}n||} | |} | ||<|t | dƒ:}q³W|i |ƒS(sº Construct an array by repeating A the number of times given by reps. If `reps` has length ``d``, the result will have dimension of ``max(d, A.ndim)``. If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote `A` to d-dimensions manually before calling this function. If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as (1, 1, 2, 2). Parameters ---------- A : array_like The input array. reps : array_like The number of repetitions of `A` along each axis. Returns ------- c : ndarray The tiled output array. See Also -------- repeat : Repeat elements of an array. Examples -------- >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array([0, 1, 2, 0, 1, 2]) >>> np.tile(a, (2, 2)) array([[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]]) >>> np.tile(a, (2, 1, 2)) array([[[0, 1, 2, 0, 1, 2]], [[0, 1, 2, 0, 1, 2]]]) >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) array([[1, 2, 1, 2], [3, 4, 3, 4]]) >>> np.tile(b, (2, 1)) array([[1, 2], [3, 4], [1, 2], [3, 4]]) R>R?R@iiÿÿÿÿi(i(R%ROR)RERRARBR(R"tmaxtsizeRRbRtrepeat( tAtrepsRFtdtcR"R7R0tnreptdim_intdim_out((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyR ÿs&8 !  "   ($t__all__tnumpy.core.numerictcoretnumericRERRRRRRRRtnumpy.core.fromnumericRRt numpy.coreRRRR RR RRRRMRRRRRRiR R R (((s:/usr/lib64/python2.6/site-packages/numpy/lib/shape_base.pyts, : p H 9 - 2  3 J > 3 - e